

Randomized Algorithms (RAs)

- Randomized algorithms are frequently used in many areas of engineering, computer science, physics, finance, optimization,...but their appearance in systems and control is mostly limited to Monte Carlo simulations...
- Main objective of this mini-course: Introduction to rigorous study of RAs for uncertain systems and control, with specific applications

Randomized Algorithms (RAs)

- Combinatorial optimization, computational geometry
- Examples: Data structuring, search trees, graph algorithms, sorting (RQS), ...
- Motion and path planning problems

IEIIT-CNR

NATO Lecture Series SCI-195

Mathematics of finance: Computation of path integrals .

@RT 200

Bioinformatics (string matching problems)

Uncertainty

- Uncertainty has been always a critical issue in control theory and applications
- First methods to deal with uncertainty were based on a stochastic approach
- Optimal control: LQG and Kalman filter

IEIIT-CNR

NATO Lecture Series SCI-195

Since early 80's alternative deterministic approach (worst-case or robust) has been proposed

@RT 2008

11

Limitations of Robust Control - 1 Researchers realized some drawbacks of robust control • Consider uncertainty Δ bounded in a set \mathcal{B} of radius ρ . Largest value of ρ such that the system is stable for all $\Delta \in \mathcal{B}$ is called (worst-case) robustness margin

- Conservatism: Worst case robustness margin may be small
- Discontinuity: Worst case robustness margin may be
 - discontinuous wrt problem data

NATO Lecture Series SCI-195

IEIIT-CNF

Limitations of Robust Control - 2

- Computational Complexity: Worst case robustness is often NP-hard (not solvable in polynomial time unless $\mathcal{P} = \mathcal{N} \mathcal{P})^{[1]}$
- Various robustness problems are NP-hard
 - static output feedback
 - structured singular value _
 - stability of interval matrices

[1] V. Blondel and J.N. Tsitsiklis (2000)

NATO Lecture Series SCI-195

F

IEIIT-CNF

Conservatism and Complexity Trade-Off

- Uncertain or control design parameters often enter into the system in a nonlinear/nonconvex fashion
- To avoid complexity issues (or just to find a solution of the problem) relaxation techniques such as SOS are used
- Study issues about the accuracy of the approximation introduced and related complexity

Different Paradigm Proposed

- New paradigm proposed is based on uncertainty randomization and leads to randomized algorithms for analysis and synthesis
- Within this setting a different notion of problem tractability is needed

@RT 2008

Objective: Breaking the curse of dimensionality^[1]

[1] R. Bellman (1957) NATO Lecture Series SCI-195

 Monte Carlo Randomized Algorithm (MCRA): A randomized algorithm that may produce incorrect results, but with bounded error probability

NATO Lecture Series SCI-19:

NATO Lecture Series SCI-193

Las Vegas Randomized Algorithm

 Las Vegas Randomized Algorithm (LVRA): A randomized algorithm that always produces correct results, the only variation from one run to another is the running time

IEIIT-CNR

NATO Lecture Series SCI-195

 One-sided MCRA: Always provide a correct solution in one of the instances (they may provide a wrong solution in the other instance)

• Consider the empirical maximum

$$\hat{J}_{\max} = \max_{i=1,...,N} J(\Delta^i)$$

where Δ^i are random samples and N is the sample size

• Check if
$$\hat{J}_{max} \leq \gamma$$
 or $\hat{J}_{max} > \gamma$

• Both are based on uncertainty randomization of Δ

@RT 200

Bounds on the sample size are obtained

]	Cł	nernoff	Bound
such a Deper	as Bern ndence	oulli (La on $1/\delta$ is	ound imp w of Lar logarith quadrati	ge Numl mic		bounds
	ε	0.1%	0.1%	0.5%	0.5%	
	$1-\delta$	99.9%	99.5%	99.9%	99.5%	
	Ν	3.9.106	3.0.106	1.6.106	1.2.105	
						•

TO Lecture Series SCI-195

EIIT-CNR			Compa	arison a		
Nu	mber of s	amples i	s much s	maller th	nan Cher	noff
1	wnomial .	randomiz	zed appro	nvimated	scheme) theory
-	pendence					
-	-					
■ De	pendence	on $1/\varepsilon$ is	s basicall	ly linear	$\left(\log \frac{1}{1-\varepsilon}\right)$	$= \varepsilon$

IEIIT-CNR

Analysis vs Design with Uncertainty

- Starting point: Worst-case analysis versus design
 Consider an interval family p(s,q), q∈ B_a={q∈ℝⁿ, ||q||_∞≤1}
- Analysis problem:
 - Check if p(s,q) is stable for all $q \in \mathcal{B}_q$ Answer: Kharitonov Theorem
- Design Problem:

NATO Lecture Series SCI-19

- Does there exist a $q \in \mathcal{B}_q$ such that p(s,q) is stable? Answer: Unknown in general

• We consider a state space description of the uncertain system

 $\dot{x}(t) = A(\Delta)x(t) + Bu(t)$

with $x(0)=x_0$; $x \in \mathbb{R}^n$; $u \in \mathbb{R}^m$, $\Delta \in \mathcal{B}_D$

IEIIT-CNR

NATO Lecture Series SCI-195

• For example, $A(\Delta)$ is an interval matrix with bounded entries $a_{ij}^- \le a_{ij} \le a_{ij}^+$

Vertex Reduction

- Answer: It suffices to check "only" a subset of 2²ⁿ vertex matrices^[1]
- This is still exponential (the problem is NP-hard), but it leads to a major computational improvement for medium size problems (e.g. n = 8 or 10)
- For example, for *n*=8, *N* is of the order 10⁵ (instead of 10¹⁹)

[1] T. Alamo, R. Tempo, D. Rodriguez, E.F. Camacho (2007) NATO Lecture Series SCI-195 @RT 2008

NATO Lecture Series SCI-195

Diagonal Matrices and Generalizations

- Transform the original problem from full square matrices *A* to diagonal matrices $Z \in \mathbb{R}^{2n,2n}$
- It suffices to check the vertices of Z
- Extensions for L₂-gain minimization and other related LMI problems

@RT 2008

Generalizations for multiaffine interval systems

	Closed-form Gradient Computation	1
NATO Lecture Series SCI-19	@RT 2008 107	7

	$\operatorname{corem}^{[1]}$
• Assumption: Every open subset of \mathcal{B}_D has measure	positive
• Theorem: A solution <i>Q</i> , if it exists, is found in number of steps with probability one	n a finite
 Idea of proof: The distance of Q^k from the sol decreases at each correction step 	ution set
[1] B.T. Polyak and R. Tempo (2001)	108

				Example	e - 4
 Sequential a 	algorithm:				
– Initial po	int Q_0 ran	domly sele	ected		
- 800 rand	om matric	es Δ^k			
– The algo	rithm conv	verged to			
	0.7560	- 0.0843	0.1645	0.7338]	
0	- 0.0843	1.0927 0.7020	0.7020	0.4452	
Q =	0.1645	0.7020	0.7798	0.7382	
	0.7338	0.4452	0.7382	1.2162	
NATO Lecture Series SCI-195		@RT 2008			112

• We assume that this problem is either unfeasible or, if feasible, it attains a unique solution for all $\Delta \in \mathcal{B}$ (this assumption is technical and may be removed)

@RT 2008

• We assume that $\theta \in \Theta \subseteq \mathbf{R}^n$

NATO Lecture Series SCI-195

IEIIT-CNF

120

RACT
 RACT: Randomized Algorithms Control Toolbox for Matlab
 RACT has been developed at IEIIT-CNR and at the Institute for Control Sciences-RAS, based on a bilateral international project
 Members of the project Andrey Tremba (Main Developer and Maintainer) Giuseppe Calafiore Fabrizio Dabbene Elena Gryazina Boris Polyak (Co-Principal Investigator) Pavel Shcherbakov Roberto Tempo (Co-Principal Investigator)
NATO Lecture Series SCI-195 @RT 2008 125

IEIIT-CNR

NATO Lecture Series SCI-195

140

Uncertainty Description - 1

- We consider structured parameter uncertainties affecting plant and flight conditions, and aerodynamic database
- Uncertainty vector $\Delta = [\delta_1, ..., \delta_{16}]$ where $\delta_i \in [\delta_i^-, \delta_i^+]$
- Key point: There is no explicit relation between state space matrices A and B and uncertainty Δ
- This is due to the fact that state space system is obtained through linearization and off-line flight simulator
- The only techniques which could be used in this case are simulation-based which lead to randomized algorithms

@RT 2008

• Uncertainties for aerodynamic data are related to experimental measurement or round-off errors

@RT 2008

NATO Lecture Series SCI-195

parameter	pdf	$\overline{\delta_i}$	%	δ_i^{-}	δ_i^+	#
flight speed [ft/s]	U	42.65	± 15	36.25	49.05	1
altitude [ft]	U	164.04	± 100	0	328.08	2
mass [lb]	U	3.31	± 10	2.98	3.64	3
wingspan [ft]	U	3.28	± 5	3.12	3.44	4
mean aero chord [ft]	U	1.75	± 5	1.67	1.85	5
wing surface [ft ²]	U	5.61	± 10	5.06	6.18	6
moment of inertia [lb ft2]	U	1.34	± 10	1.21	1.48	7

parameter	pdf	$\overline{\delta_i}$	σ_i	#	
<i>C_X</i> [-]	G	-0.01215	0.00040	8	
C _z [-]	G	-0.30651	0.00500	9	
$C_m[-]$	G	-0.02401	0.00040	10	
C_{Xq} [rad ⁻¹]	G	-0.20435	0.00650	11	
C_{Zq} [rad ⁻¹]	G	-1.49462	0.05000	12	
C_{mq} [rad ⁻¹]	G	-0.76882	0.01000	13	
C_X [rad ⁻¹]	G	-0.17072	0.00540	14	
C_Z [rad ⁻¹]	G	-1.41136	0.02200	15	
C_m [rad ⁻¹]	G	-0.94853	0.01500	16	

EIIT-CNR				
	1	1		1
gain set	K_V	K _α	K_q	K_{θ}
K^1	0.00044023	0.09465000	0.01577400	-0.00473510
<i>K</i> ²	0.00021450	0.09581200	0.01555500	-0.00323510
K ³	0.00054999	0.09430800	0.01548200	-0.00486340
<i>K</i> ⁴	0.00010855	0.09183200	0.01530000	-0.00404380
K ⁵	0.00039238	0.09482700	0.01609300	-0.00417340

EIIT-CNR	Empirical Probability of Stability for Phase 2
gain set	empirical probability
<i>K</i> ¹	88.56%
<i>K</i> ²	90.60%
<i>K</i> ³	89.31%
<i>K</i> ⁴	93.86%
K ⁵	85.14%

Empiri IT-CNR	cal Probability of Performance for Phase 3
gain set	empirical probability
K^1	93.58%
<i>K</i> ²	95.16%
<i>K</i> ³	90.80%
<i>K</i> ⁴	84.78%
K ⁵	96.06%

Bandwidth criterion for K^1 (left) and K^3 (right)

F

Conclusions: Flight Tests in Sicily - 1 IEIIT-CNR

- Evaluation of the payload carrying capabilities and autonomous flight performance
- Mission test involving altitude, velocity and heading changing was performed in Sicily
- Checking effectiveness of the control laws for longitudinal and lateral-directional dynamics
- Flight control design based on RAs for stabilization and guidance

@RT 200

167

NATO Lecture Series SCI-195

@RT 2008

NATO Lecture Series SCI-195

	PAC Algorithms
 Randomized algorithm Correct (PAC) 	ns are Probably Approximately
• We give up a guarante	ed deterministic solution
 This implies accepting solution 	g a "small" risk of giving a wrong
	e arbitrarily small (but not zero) es of so-called confidence and
NATO Lecture Series SCI-195	@RT 2008 180

• Derive "reasonable" bounds for the statistical learning theory approach

@RT 2008

181

