

Randomized Algorithms for Systems and Control: Theory and Applications
$\left.\begin{array}{ccc}\text { Roberto Tempo } \\ \text { IEIIT-CNR } \\ \text { Politecnico di Torino } \\ \text { roberto.tempo @ polito.it }\end{array}\right]$

- Additional documents, papers, etc, please consult http://staff.polito.it/roberto.tempo/
- Questions may be sent to roberto.tempo@polito.it
NATO Lecture Series SCI-195 @RT 2008

Overview

- Preliminaries
- Randomized Algorithms for Analysis
- Probabilistic Robust Synthesis
- Randomized Algorithms for Optimal Control (LQR)
- Extensions
- Applications: Probabilistic Control of Mini UAVs
- RACT: Randomized Algorithms Control Toolbox for Matlab

> http://ract.sourceforge.net
$\overline{\text { NATO Lecture Series SCl-195 }}$
@RT 2008

References

- R. Tempo, G. Calafiore and F. Dabbene, "Randomized Algorithms for Analysis and Control of Uncertain Systems," Springer-Verlag, London, 2005
- R. Tempo and H. Ishii, "Monte Carlo and Las Vegas Randomized Algorithms for Systems and Control: An Introduction," European Journal of Control, Vol. 13, pp. 189203, 2007

@RT 2008	3

Randomized Algorithms (RAs)

IEIIT-CNR

- Randomized algorithms are frequently used in many areas of engineering, computer science, physics, finance, optimization, ...but their appearance in systems and control is mostly limited to Monte Carlo simulations...
- Main objective of this mini-course: Introduction to rigorous study of RAs for uncertain systems and control, with specific applications

NATO Lecture Series SCI-195	@RT 2008	6

Randomized Algorithms (RAs)

- Combinatorial optimization, computational geometry
- Examples: Data structuring, search trees, graph algorithms, sorting (RQS), ..
- Motion and path planning problems
- Mathematics of finance: Computation of path integrals
- Bioinformatics (string matching problems)

Uncertainty

- Uncertainty has been always a critical issue in control theory and applications
- First methods to deal with uncertainty were based on a stochastic approach
- Optimal control: LQG and Kalman filter
- Since early 80 's alternative deterministic approach (worst-case or robust) has been proposed

$$
\begin{array}{llll}
& & \\
\hline \text { NATO Lecture Series SCL-195 } & \text { @RT } 2008 & 8 \\
\hline
\end{array}
$$

Robustness

- Major stepping stone in 1981: Formulation of the \mathcal{H}_{∞} problem by George Zames
- Various "robust" methods to handle uncertainty now exist: Structured singular values, Kharitonov, optimization-based (LMI), l-one optimal control, quantitative feedback theory (QFT)

Robustness

IEIIT-CNR

$\square \square \square \square \square \square \square \square \square \square \square$

- Late 80 's and early 90 's: Robust control theory became a well-assessed area
- Successful industrial applications in aerospace, chemical, electrical, mechanical engineering, ...
- However, ...

	@RT 2008	10
TO Lecture Series SCI-195		

[^0]
Conservatism and Complexity
 Trade－Off

New paradigm proposed is based on uncertainty
randomization and leads to randomized algorithms for
analysis and synthesis
Within this setting a different notion of problem
tractability is needed
Objective：Breaking the curse of dimensionality ${ }^{[1]}$
［1］R．Bellman（1957）
$\frac{\text { NATO Lecture Series SCI－195 }}{\text { ORT }}$（2008
－The interplay of Probability and Robustness for control of uncertain systems
－Robustness：Deterministic uncertainty bounded
－Probability：Random uncertainty（pdf is known）
－Computation of the probability of performance
－Controller which stabilizes most uncertain systems
－We obtain larger robustness margins at the expense of a small risk
－We study the probability degradation beyond the robustness margins
－Computational complexity is generally not an issue： Randomized algorithms are low complexity

- Uncertainty Δ is bounded in a structured set \mathcal{B}_{D}
- $z=\mathcal{F}_{u}(M, \Delta) w$, where $\mathcal{F}_{u}(M, \Delta)$ is the upper LFT
\qquad
${ }^{\text {©RT } 2008}$

Example: Flexible Structure - 1
IEIIT-CNR

- Mass spring damper model
- Real parametric uncertainty affecting stiffness and damping
- Complex unmodeled dynamics (nonparametric)

NATO Lecture Series SCl-195
@RT 2008 21

Flexible Structure - 2
IEIIT-CNR
$\square \square \square \square \square \square \square \square \square \square$

- $M-\Delta$ configuration for controlled systems and study stability of
$q_{1}, q_{2} \in \mathbb{R}$

$$
\begin{aligned}
& M(s)=C(s I-A)^{-1} B \\
\Delta & =\left[\begin{array}{ccc}
q_{1} I_{5} & 0 & 0 \\
0 & q_{2} I_{5} & 0 \\
0 & 0 & \Delta_{1}
\end{array}\right]
\end{aligned}
$$

$\Delta_{1} \in \mathbb{C}^{4,4}$
$\Delta \in \mathcal{B}_{D}=\{\Delta \in D: \sigma(\Delta)<\rho\}$

NATO Lecture Series SCI-195

$\varlimsup_{\text {IEIT-CNR }}^{(民}$ Uniform Density

- Take $f_{\Delta}(\Delta)=\mathcal{U}\left[\mathcal{B}_{D}\right]$ (uniform density within \mathcal{B}_{D})

$$
\mathcal{U}\left[\mathcal{B}_{D}\right]=\left\{\begin{array}{cl}
\frac{1}{\operatorname{vol}\left(\mathcal{B}_{D}\right)} & \text { if } \Delta \in \mathcal{B}_{D} \\
0 & \text { otherwise }
\end{array}\right.
$$

- In this case, for a subset $\mathcal{S} \subseteq \mathcal{B}_{D}$

$$
\frac{\operatorname{Pr}\{\Delta \in \mathcal{S}\}=\frac{\int_{\mathcal{S}} d \Delta}{\operatorname{vol}\left(\mathcal{B}_{D}\right)}=\frac{\operatorname{vol}(\mathcal{S})}{\operatorname{vol}\left(\mathcal{B}_{D}\right)}}{\text { NATO Lectur Series SCl-195 }^{\text {ents }}}
$$

In classical robustness we guarantee that a certain
performance requirement is attained for all $\Delta \in \mathcal{B}_{D}$
This can be stated in terms of a performance function
$\quad J=J(\Delta)$
Examples: \mathcal{H}_{∞} performance and robust stability
EATO Lecture Series SCI-195

Example: \mathcal{H}_{∞} Performance - 1
IEIIT-CNR Example: \mathcal{H}_{∞} Performance - 1

- Compute the \mathcal{H}_{∞} norm of the upper LFT $\mathcal{F}_{u}(M, \Delta)$

$$
J(\Delta)=\left\|\mathcal{F}_{u}(M, \Delta)\right\|_{\infty}
$$

- For given $\gamma>0$, check if

$$
J(\Delta)<\gamma
$$

for all Δ in \mathcal{B}_{D}

- Continuous time SISO systems with real parametric uncertainty q with upper LFT

$$
\begin{aligned}
& \mathcal{F}_{u}(M, \Delta)=\mathcal{F}_{u}(M, q)= \\
& \frac{0.5 q_{1} q_{2} s+10^{-5} q_{1}}{{ }^{2}+\left(0.00102+0.5 q_{2}\right) s+\left(2 \cdot 10^{-5}+0.5 q_{1}^{2}\right)}
\end{aligned}
$$

where $q_{1} \in[0.2,0.6]$ and $q_{2} \in\left[10^{-5}, 3 \cdot 10^{-5}\right]$
■ Letting $J(q)=\left\|\mathcal{F}_{u}(M, q)\right\|_{\infty}$, we choose $\gamma=0.003$

- Check if $J(q)<\gamma$ for all q in these intervals

Example ${ }^{[1]}$: Robust Stability - 1

IEIIT-CNR

- Consider the closed loop uncertain polynomial
$p(s, q)=$
$\left(1+r^{2}+6 q_{1}+6 q_{2}+2 q_{1} q_{2}\right)+\left(q_{1}+q_{2}+3\right) s+\left(q_{1}+q_{2}+1\right) s^{2}+s^{3}$
where $q_{1} \in[0.3,2.5], q_{2} \in[0,1.7]$ and $r=0.5$
- Check stability for all q in these intervals
[1] G. Truxal (1961)

		@RT 2008
NATO Lecture Series SCl-195	30	

Example: Robust Stability - 2

$\square \square \square \square \square \square \square \square \square \square ा$

- Set of unstable polynomials

- Taking $r=0$ the unstable set reduces to a singleton
\qquad

NATO Lecture Series SCI-195
@RT 2008

Probabilistic Robustness Measure
IEIT-CNR

- In worst-case analysis we compute γ such that all Δ satisfy performance. Equivalently, we evaluate γ such that

$$
\Delta_{\text {good }}=\mathcal{B}_{D}
$$

- In a probabilistic setting, we are satisfied if the ratio

	$\frac{\operatorname{vol}\left(\Delta_{g \text { good }}\right)}{\operatorname{vol}\left(\mathcal{B}_{D}\right)}$	
is close to one		
NATO Lecture Series SCI-195	ert 2008	35

$$
\frac{\operatorname{vol}\left(\Delta_{g o o d}\right)}{\operatorname{vol}\left(\mathcal{B}_{D}\right)}
$$

NATO Lecture Series SCI-195
@RT 2008

$$
\begin{aligned}
& \Delta_{\text {good }}=\{\Delta: J(\Delta) \leq \gamma\} \subseteq \mathcal{B}_{D} \\
& \Delta_{\text {bad }}=\{\Delta: J(\Delta)>\gamma\} \subseteq \mathcal{B}_{D}
\end{aligned}
$$

- $\Delta_{\text {good }}$ is the set of Δ 's satisfying performance
- Measure of robustness is

$$
\operatorname{vol}\left(\Delta_{g o o d}\right)=\int_{\Delta_{\text {good }}} d \Delta
$$

NATO Lecture Series SCI-195	@RT 2008	32

Example of Good and Bad Sets - 2
 IEIIT-CNR
 Taking small r

 NATO Lecture Series SCI-195
 34

Probability of Performance ${ }^{[1]}$

- We define the probability of performance as

$$
p_{\gamma}=\operatorname{Pr}\{J(\Delta) \leq \gamma\}
$$

- Notice that, if $f_{\Delta}(\Delta)$ is uniform, then

$$
\begin{aligned}
& \qquad p_{\gamma}=\frac{\operatorname{vol}\left(\Delta_{g o o d}\right)}{\operatorname{vol}\left(\mathcal{B}_{D}\right)} \\
& \text { [1] R.F. Stengel (1980) } \\
& \hline \text { NATO Lecture Series SCl-195 } \\
& \text { @RT 2008 } \\
& \hline
\end{aligned}
$$

Example: Closed-Form Computation

For Truxal's example, we compute p_{γ} in closed-form

- For uniform distribution, we have

$$
\begin{aligned}
& \operatorname{vol}\left(\Delta_{\text {good }}\right)=3.74-\pi r^{2} \\
& \operatorname{vol}\left(\mathcal{B}_{D}\right)=3.74
\end{aligned}
$$

$\underset{\text { IEIIT-CNR }}{ } \mathrm{P}$ (Performance Verification			
■ For given performance level γ, check whether			
$J(\Delta) \leq \gamma$			
for all Δ in \mathcal{B}_{D}			
■ Compute the probability of performance p_{γ}			
$\begin{array}{lll}\text { NATO Lecture Series SCI-195 } & \text { @RT 2008 } & 38\end{array}$			

P2: Worst-Case Performance

IEIIT-CNR

- Find $J_{\text {max }}$ such that

$$
J_{\text {max }}=\max _{\Delta \in \mathcal{B}_{o}} J(\Delta)
$$

- Compute the worst case performance (or its probabilistic counterpart)

	@RT 2008

- Randomized Algorithm (RA): An algorithm that makes random choices during its execution to produce a result
- Example of a "random choice" is a coin toss

heads	or	tails

Randomized Algorithm: Definition

IEIIT-CNR

- Randomized Algorithm (RA): An algorithm that makes random choices during its execution to produce a result
- For hybrid systems, "random choices" could be switching between different states or logical operations
- For uncertain systems, "random choices" require (vector or matrix) random sample generation

$$
\begin{array}{lcc}
\hline \text { NATO Lecture Series SCl-195 } & \text { @RT 2008 } & 42 \\
\hline
\end{array}
$$

Monte Carlo Randomized Algorithm

- Monte Carlo Randomized Algorithm (MCRA): A randomized algorithm that may produce incorrect results, but with bounded error probability

Las Vegas Randomized Algorithm

- Las Vegas Randomized Algorithm (LVRA): A randomized algorithm that always produces correct results, the only variation from one run to another is the running time

	@RT 2008	43
NATO Lecture Series SCI-195		

- | | @RT 2008 | 44 |
| :--- | :--- | :--- |
| NATO Lecture Series SCI-195 | | |

$$
\begin{aligned}
& \text { Randomization of Uncertain Systems } \\
& \text { - Consider random uncertainty } \Delta \text {, associated pdf and } \\
& \text { bounding set } \mathcal{B} \\
& \Delta \text { is a (real or complex) random vector (parametric } \\
& \text { uncertainty) or matrix (nonparametric uncertainty) } \\
& \text { - Consider a performance function } \\
& \qquad J(\Delta): \mathcal{B} \rightarrow \mathbf{R} \\
& \text { and level } \gamma>0 \\
& \text { Define worst case and average performance } \\
& \qquad J_{\max }=\max _{\Delta \in \mathrm{B}} J(\Delta) \quad J_{\text {ave }}=E_{\Delta}(J(\Delta)) \\
& \frac{\text { ®RTz 2008 }}{\text { NATO Lectur series SCI-195 }} \\
& \hline
\end{aligned}
$$

Example: \mathcal{H}_{∞} Performance - 2

- \mathcal{H}_{∞} performance of sensitivity function

$$
\begin{aligned}
\mathcal{B} & =\left\{\Delta: \Delta=\operatorname{bdiag}\left(\Delta_{1}, \ldots, \Delta_{q}\right) \in \mathbf{F}^{n, m}, \sigma_{\max }(\Delta) \leq \rho\right\} \\
S(s, \Delta) & =1 /(1+P(s, \Delta) C(s)) \\
J(\Delta) & =\|S(s, \Delta)\|_{\infty}
\end{aligned}
$$

- Objective: Check if

$$
J_{\max } \leqslant \gamma \quad \text { and } \quad J_{\text {ave }} \leqslant \gamma
$$

- These are uncertain decision problems

$$
\begin{array}{lcc}
\hline \text { NATO Lecture Series SCL-195 } & \text { @RT 2008 } & 47 \\
\hline
\end{array}
$$

Example: \mathcal{H}_{∞} Performance - 1

IEIIT-CN

- \mathcal{H}_{∞} performance of sensitivity function

$$
\begin{aligned}
\mathcal{B} & =\left\{\Delta: \Delta=\operatorname{bdiag}\left(\Delta_{1}, \ldots, \Delta_{q}\right) \in \mathbf{F}^{n, m}, \sigma_{\max }(\Delta) \leq \rho\right\} \\
S(s, \Delta) & =1 /(1+P(s, \Delta) C(s)) \\
J(\Delta) & =\|S(s, \Delta)\|_{\infty}
\end{aligned}
$$

[^1]■ One-sided MCRA: Always provide a correct solution in one of the instances (they may provide a wrong solution in the other instance)

- Consider the empirical maximum

$$
\hat{J}_{\max }=\max _{i=1, \ldots, N} J\left(\Delta^{i}\right)
$$

where Δ^{i} are random samples and N is the sample size

- Check if $\hat{J}_{\text {max }} \leqslant \gamma$ or $\hat{J}_{\text {max }}>\gamma$

Las Vegas Randomized Algorithms

- We also have zero-sided (Las Vegas) randomized algorithms
- Las Vegas Randomized Algorithm (LVRA): Always give the correct solution
- The solution obtained with a LVRA is probabilistic, so "always" means with probability one
- Running time may be different from one run to another
- We can study the average running time

Discrete Bounding Set

IEITT-CNR

Consider random uncertainty Δ, a discrete bounding set B, given pdf and performance function

Ingredients for RAs

琼

- Assume that Δ is random with $\operatorname{pdf} f_{\Delta}(\Delta)$ with support \mathcal{B}_{D}
- Accuracy $\varepsilon \in(0,1)$ and confidence $\delta \in(0,1)$ be assigned
- Performance function for analysis and level

$$
\downarrow \quad \downarrow
$$

$$
J=J(\Delta)
$$

γ

$$
\begin{array}{lcc}
\hline \text { NATO Lecture Series SCl-195 } & \text { @RT 2008 } & 60 \\
\hline
\end{array}
$$

Randomized Algorithms for Analysis

- Two classes of randomized algorithms for probabilistic robust performance analysis
- P1: Performance verification (compute p_{γ})
- P2: Worst-case performance (compute $J_{\max }$)
- Both are based on uncertainty randomization of Δ
- Bounds on the sample size are obtained
\qquad
- Construct an indicator function

$$
I\left(\Delta^{i}\right)=\left\{\begin{array}{lc}
1 & \text { if } J\left(\Delta^{i}\right) \leq \gamma \\
0 & \text { otherwise }
\end{array}\right.
$$

- An estimate of p_{γ} is the empirical probability

$$
\hat{p}_{N}=\frac{1}{N} \sum_{i=1}^{N} I\left(\Delta^{i}\right)=\frac{N_{g o o d}}{N}
$$

where $N_{\text {good }}$ is the number of samples such that $J\left(\Delta^{i}\right) \leq \gamma$

- For any $\mathcal{\varepsilon} \in(0,1)$ and $\delta \in(0,1)$, if

$$
N \geq \frac{\log \frac{2}{\delta}}{2 \varepsilon^{2}}
$$

then

$$
\operatorname{Pr}\left\{\left|p_{\gamma}-\hat{p}_{N}\right| \leq \varepsilon\right\} \geq 1-\delta
$$

[1] H. Chernoff (1952) \qquad

Randomized Algorithms - 2

IEITT-CNR

- We estimate p_{γ} by means of a randomized algorithm
- First, we generate N i.i.d. samples

$$
\Delta^{1}, \Delta^{2}, \ldots, \Delta^{N} \in \mathcal{B}_{D}
$$

according to the density f_{Δ}

- We evaluate $J\left(\Delta^{1}\right), J\left(\Delta^{2}\right), \ldots, J\left(\Delta^{N}\right)$

	@RT 2008	62
NATO Lecture Series SCl-195		

A Reliable Estimate

- The empirical probability is a reliable estimate if

$$
\left|p_{\gamma}-\hat{p}_{N}\right|=\left|\operatorname{Pr}\{J(\Delta) \leq \gamma\}-\hat{p}_{N}\right| \leq \varepsilon
$$

- Find the minimum N such that

$$
\operatorname{Pr}\left\{\left|p_{\gamma}-\hat{p}_{N}\right| \leq \varepsilon\right\} \geq 1-\delta
$$

where $\varepsilon \in(0,1)$ and $\delta \in(0,1)$

NATO Lecture Series SCl-195

Chernoff Bound

- Remark: Chernoff bound improves upon other bounds such as Bernoulli (Law of Large Numbers)
- Dependence on $1 / \delta$ is logarithmic
- Dependence on $1 / \varepsilon$ is quadratic

ε	0.1%	0.1%	0.5%	0.5%
$1-\delta$	99.9%	99.5%	99.9%	99.5%
N	$3.9 \cdot 10^{6}$	$3.0 \cdot 10^{6}$	$1.6 \cdot 10^{6}$	$1.2 \cdot 10^{5}$

NATO Lecture Series SCI-195	@RT 2008	67

- RAs are efficient (polynomial-time) because

1. Random sample generation of Δ^{i} can be performed in polynomial-time
2. Cost associated with the evaluation of $J\left(\Delta^{i}\right)$ for fixed Δ^{i} is polynomial-time
3. Sample size is polynomial in the problem size and probabilistic levels ε and δ

$$
\begin{array}{lcc}
\hline \text { NATO Lecture Series SCI-195 } & \text { @RT 2008 } & 68 \\
\hline
\end{array}
$$

1. Random Sample Generation

- Random number generation (RNG): Linear and nonlinear methods for uniform generation in $[0,1)$ such as Fibonacci, feedback shift register, BBS, MT, ...

■ Non-uniform univariate random variables: Suitable functional transformations (e.g., the inversion method)

- The problem is much harder: Multivariate generation of samples of Δ with $\operatorname{pdf} f_{\Delta}(\Delta)$ and support \mathcal{B}_{D}
- It can be resolved in polynomial-time
$\overline{\text { NATO Lecture Series SCl-195 }}$
@RT 2008

2. Cost of Checking Stability

IEIIT-CNR
$\square \square \square$

- Consider a polynomial

$$
p(s, a)=a_{0}+a_{1} s+\cdots+a_{n} s^{n}
$$

- To check left half plane stability we can use the Routh test. The number of multiplications needed is

$$
\frac{n^{2}}{4} \text { for } n \text { even } \quad \frac{n^{2}-1}{4} \text { for } n \text { odd }
$$

■ The number of divisions and additions is equal to this number

- We conclude that checking stability is $\mathrm{O}\left(n^{2}\right)$
- Chernoff bound is independent on the size of \mathcal{B}_{D}, on the structure D on the number of blocks, on the pdf $f_{\Delta}(\Delta)$
- It depends only on δ and ε
- Same comments can be made for other bounds such as Bernoulli

Worst-Case Bound (Log-over-Log) ${ }^{[1]}$
IEIIT-CNR

- For any $\varepsilon \in(0,1)$ and $\delta \in(0,1)$, if

$$
N \geq \frac{\log \frac{1}{\delta}}{\log _{\frac{1}{1-\varepsilon}}^{1-\varepsilon}}
$$

then

$$
\operatorname{Pr}\left\{\operatorname{Pr}\left\{J(\Delta)>\hat{J}_{N}\right\} \leq \varepsilon\right\} \geq 1-\delta
$$

[1] R. Tempo, E. W. Bai and F. Dabbene (1996)
NATO Lecture Series SCI-195 ©RT 2008

Comparison and Comments

- Number of samples is much smaller than Chernoff
- Bound is a specific instance of the fpras (fully polynomial randomized approximated scheme) theory
- Dependence on $1 / \varepsilon$ is basically linear $\left(\log \frac{1}{1-\varepsilon} \approx \varepsilon\right)$

ε	0.1%	0.1%	0.5%	0.5%	0.01%	0.001%
$1-\delta$	99.9%	99.5%	99.9%	99.5%	99.99%	99.999%
N	$6.91 \cdot 10^{3}$	$5.30 \cdot 10^{3}$	$1.38 \cdot 10^{3}$	$1.06 \cdot 10^{3}$	$9.21 \cdot 10^{4}$	$1.16 \cdot 10^{6}$

NATO Lecture Series SCl-195
@RT 2008

Confidence Intervals

- The Chernoff and worst-case bounds can be computed a priori and provide an explicit functional relation

$$
N=N(\varepsilon, \delta)
$$

- The sample size obtained with the confidence intervals is not explicit
- Given $\delta \in(0,1)$, upper and lower confidence intervals p_{L} and p_{U} are such that

$$
\operatorname{Pr}\left\{p_{L} \leq p_{\gamma} \leq p_{U}\right\}=1-\delta
$$

$$
\operatorname{Pr}\left\{\operatorname{vol}\left(\Delta_{\text {bad }}\right) \leq \varepsilon \operatorname{vol}\left(\mathcal{B}_{D}\right)\right\} \geq 1-\delta
$$

$\stackrel{\Gamma}{\square}$
 IEITT-CNR
 Statistical Learning Theory

- The Chernoff Bound studies the problem

$$
\operatorname{Pr}\left\{\left|p_{\gamma}-\hat{p}_{N}\right| \leq \varepsilon\right\} \geq 1-\delta
$$

where $p_{\gamma}=\operatorname{Pr}\{J(\Delta) \leq \gamma\}$

- Performance function J is fixed
- Statistical Learning Theory computes bounds on the sample size for the problem

$$
\operatorname{Pr}\left\{\left|\operatorname{Pr}(J(\Delta) \leq \gamma)-\hat{p}_{N}\right| \leq \varepsilon, \forall J \in \mathcal{J}\right\} \geq 1-\delta
$$

where \mathcal{J} is a given class of functions

Choice of the Distribution-1

- The probability $\operatorname{Pr}\{\Delta \in \mathcal{S}\}$ depends on $f_{\Delta}(\Delta)$
- It may vary between 0 and 1 depending on the $\operatorname{pdf} f_{\Delta}(\Delta)$
 Choice of the Distribution - 2

$\square \square \square$

- The bounds discussed are independent on the choice of the distribution but for computing $\operatorname{Pr}\{J(\Delta) \leq \gamma\}$ we need to know the distribution $f_{\Delta}(\Delta)$
- Some research has been done in order to find the worst-case distribution in a certain class ${ }^{[1]}$
- Uniform distribution is the worst-case if a certain target is convex and centrally symmetric
[1] B. R. Barmish and C. M. Lagoa (1997)

Analysis vs Design with Uncertainty

- Starting point: Worst-case analysis versus design
- Consider an interval family $p(s, q), q \in \mathcal{B}_{q}=\left\{q \in \mathbb{R}^{n},\|q\|_{\infty} \leq 1\right\}$
- Analysis problem:
- Check if $p(s, q)$ is stable for all $q \in \mathcal{B}_{q}$

Answer: Kharitonov Theorem

- Design Problem:
- Does there exist a $q \in \mathcal{B}_{q}$ such that $p(s, q)$ is stable?

Answer: Unknown in general

Synthesis Performance Function

- Recall that the parameterized controller is K_{θ}
- We replace $J(\Delta)$ with a synthesis performance function

$$
J=J(\Delta, \theta)
$$

where $\theta \in \Theta$ represents the controller parameters to be determined and their bounding set

NATO Lecture Series SCl-195 @RT 2008 87

Randomized Algorithms for Synthesis

- Two classes of RAs for probabilistic synthesis
- Average performance synthesis ${ }^{[1]}$
- Based on expected value minimization
- Use of Statistical Learning Theory results
- Very general problems can be handled
- Existing bounds are very conservative and controller randomization is required
■ Ongoing research aiming at major reduction of sample size
[1] M. Vidyasagar (1998)

NATO Lecture Series SCI-195	@RT 2008	88

NATO Lecture Series SCI-195
@RT $2008 \longrightarrow 91$

Interval and Vertex Matrices

- We consider interval uncertainty \mathcal{A} (i.e. when $\Delta \in \mathcal{B}_{D}$)
- That is, $a_{i k}$ ranges in the interval for all i, k

$$
\left|a_{i k}-a_{i k}{ }^{*}\right| \leq w_{i k}
$$

where $a_{i k}{ }^{*}$ are nominal values and $w_{i k}$ are weights

- Define the $N=2^{n^{2}}$ vertex matrices $A^{1}, A^{2}, \ldots, A^{N}$

$$
a_{i k}=a_{i k}^{*}+w_{i k} \quad \text { or } \quad a_{i k}=a_{i k}^{*}-w_{i k}
$$

for all $i, k=1,2, \ldots, n$

Que to convexity, it suffices to study $\mathcal{L}(Q, A)<0$ for
all vertex matrices ${ }^{[1]}$
Question: Do we really need to check all the vertex
matrices $\left(N=2^{n^{2}}\right)$?
$\frac{\text { [1] H.P. Horisberger, P.R. Belanger (1976) }}{\text { NATO Lecture Series SCI-195 }}$
@RT 2008

Vertex Reduction

IEIIT-CNR

$\square \square \square \square \square \square \square \square \square \square \square$

- Answer: It suffices to check "only" a subset of $2^{2 n}$ vertex matrices ${ }^{[1]}$
- This is still exponential (the problem is NP-hard), but it leads to a major computational improvement for medium size problems (e.g. $n=8$ or 10)
- For example, for $n=8, N$ is of the order 10^{5} (instead of 10^{19})
[1] T. Alamo, R. Tempo, D. Rodriguez, E.F. Camacho (2007)

NATO Lecture Series SCI-195	@RT 2008	97

Diagonal Matrices and Generalizations

- Transform the original problem from full square matrices A to diagonal matrices $Z \in \mathbf{R}^{2 n, 2 n}$
- It suffices to check the vertices of Z
- Extensions for \mathcal{L}_{2}-gain minimization and other related LMI problems
- Generalizations for multiaffine interval systems

		@RT 2008
NATO Lecture Series SCI-195	98	

Las Vegas Randomized Algorithm

- We may perform randomization of the $N=2^{n^{2}}$ vertices (in the worst case)
- If we select the vertices in random order according to a given pdf, we have a LVRA

Sequential Algorithm

IEIIT-CNR
$\square \square \square$

- Key point: Sequential algorithm which deals with one constraint at each step
- At step k we have

Phase 1: Uncertainty randomization of Δ
Phase 2: Gradient algorithm and projection

- Final result: Find a solution $Q=Q^{T}>0$ with probability one in a finite number of steps

Projection on a Cone
$\square \square \square \square \square \square \square \square \square \square$ For any real symmetric matrix A we define the projection $[A]^{+} \in C$ as

$$
[A]^{+}=\arg \min _{X \in C}\|A-X\|
$$

－The projection can be computed through the eigenvalue decomposition $A=T \Lambda T^{T}$
－Then

$$
[A]^{+}=T \Lambda^{+} T^{T}
$$

where $\lambda_{i}{ }^{+}=\max \left\{\lambda_{i}, 0\right\}$

NATO Lecture Series SCl－195
${ }^{\text {＠RT } 2008}$

Matrix Valued Function

$\square \square \square \square \square \square \square \square \square \square \square$
－Define a matrix valued function

$$
V\left(Q, \Delta^{k}\right)=A\left(\Delta^{k}\right) Q+Q A^{T}\left(\Delta^{k}\right)
$$

and a scalar function

$$
v\left(Q, \Delta^{k}\right)=\left\|\left[V\left(Q, \Delta^{k}\right)\right]^{+}\right\|
$$

where $\|\cdot\|$ is the Frobenius norm
－We can also take the maximum eigenvalue of $V\left(Q, \Delta^{k}\right)$

NATO Lecture Series SCI－195

Phase 1：Uncertainty Randomization

－『ロロロロロロロロロ

－Uncertainty randomization：Generate $\Delta^{k} \in \mathcal{B}_{D}$
－Then，for guaranteed cost we obtain the Lyapunov equation

$$
A\left(\Delta^{k}\right) Q+Q A^{T}\left(\Delta^{k}\right) \leq 0
$$

－We write

$$
Q^{k+1}=\left\{\begin{array}{cl}
{\left[Q^{k}-\mu^{k} \partial_{Q}\left\{v\left(Q^{k}, \Delta^{k}\right)\right\}\right]^{+}} & \text {if } v\left(Q^{k}, \Delta^{k}\right)>0 \\
Q^{k} & \text { otherwise }
\end{array}\right.
$$

where ∂_{Q} is the subgradient and the stepsize μ^{k} is

$$
\mu^{k}=\frac{v\left(Q^{k}, \Delta^{k}\right)+r\left\|\partial_{Q}\left\{v\left(Q^{k}, \Delta^{k}\right)\right\}\right\|}{\|\left.\partial_{Q}\left\{\left(Q^{k}, \Delta^{k}\right)\right\}\right|^{2}}
$$

and $r>0$ is a parameter

NATO Lecture Series SCI－195	＠RT 2008	106

Closed－form Gradient Computation

IEIIT－CNR
－The function $v\left(Q, \Delta^{k}\right)$ is convex in Q and its subgradient can be easily computed in a closed form

IEIIT－CNR

$\square \square \square \square \square \square \square$

－Assumption：Every open subset of \mathcal{B}_{D} has positive measure
－Theorem：A solution Q ，if it exists，is found in a finite number of steps with probability one
－Idea of proof：The distance of Q^{k} from the solution set decreases at each correction step
［1］B．T．Polyak and R．Tempo（2001）
NATO Lecture Series SCI－195＠RT 2008

IEIIT－CNR

Example ${ }^{[1]}$

－We study a multivariable example for the design of a controller for the lateral motion of an aircraft．
－The model consists of four states and two inputs
$\dot{x}(t)=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & L_{p} & L_{\beta} & L_{r} \\ g / v & 0 & Y_{\beta} & -1 \\ N_{\beta}(g / v) & N_{p} & N_{\beta}+N_{\beta} Y_{\beta} & N_{r}-N_{\beta}\end{array}\right] x(t)+\left[\begin{array}{cc}0 & 0 \\ 0 & -3.91 \\ 0.035 & 0 \\ -2.53 & 0.31\end{array}\right] u(t)$
［1］B．D．O．Anderson and J．B．Moore（1971）

	＠RT 2008	109
NATO Lecture Series SCI 195		

Example－ 3

IEIIT－CNR

ーロロロロロロロロ

－Nominal values：$L_{p}=-2.93, \quad L_{\beta}=-4.75, \quad L_{r}=0.78$ ， $g / V=0.086, \quad Y_{\beta}=-0.11, \quad N_{\beta}=0.1, \quad N_{p}=-0.042, \quad N_{\beta}=2.601$ ， $N_{r}=-0.29$
－Perturbed matrix $A(\Delta)$ ：each parameter can take values in a range of $\pm 15 \%$ of the nominal value
－Quadratic stability $(\gamma=0)$ ：take $R=I$ and $S=0.01 I$
－Remark：$A(\Delta)$ is multiaffine in the uncertain parameters： quadratic stability can be ascertained solving simultaneously $2^{9}=512$ LMIs
$\square \square \square \square \square \square \square$
－The corresponding controller
$K=B^{T} Q^{-1}=\left[\begin{array}{llll}38.6191 & -4.3731 & 43.1284 & -49.9587 \\ -2.8814 & -10.1758 & 10.2370 & -0.4954\end{array}\right]$ satisfies all the 512 vertex LMIs and therefore it is also a quadratic stabilizing controller in a deterministic sense
－The optimal LQ controller computed on the nominal plant satisfies only 240 vertex LMIs
－Sequential algorithm：
－Initial point Q_{0} randomly selected
－ 800 random matrices Δ^{k}
－The algorithm converged to

$$
Q=\left[\begin{array}{cccc}
0.7560 & -0.0843 & 0.1645 & 0.7338 \\
-0.0843 & 1.0927 & 0.7020 & 0.4452 \\
0.1645 & 0.7020 & 0.7798 & 0.7382 \\
0.7338 & 0.4452 & 0.7382 & 1.2162
\end{array}\right]
$$

NATO Lecture Series SCl－195
＠RT 2008
112

Related Literature and Extensions

- Minimization of a measure of violation for problems that are not strictly feasible ${ }^{[1]}$
- Uncertainty in the control matrix, $B=B(\Delta), \Delta \in \mathcal{B}_{D}$

We take the feedback law

$$
u=Y Q^{-1} x
$$

where Y and $Q=Q^{T}>0$ are design variables
[1] B.R. Barmish and P. Shcherbakov (1999)

	@RT 2008	115
NATO Lecture Series SCI-195		

Subsequent Research

IEIIT-CN

Optimization Problems ${ }^{[1]}$

- Extensions to optimization problems
- Consider convex function $f(x)$ and function $g(x, \Delta)$ convex in x for fixed Δ
- Semi-infinite (nonlinear) programming problem

$$
\min f(x)
$$

$g(x, \Delta) \leq 0$ for all $\Delta \in \mathcal{B}$

- Reformulation as stochastic optimization
- Drawback: Convergence results are only asymptotic

```
[1] V. B. Tadic, S. P. Meyn and R. Tempo (2003)
```


- The scenario approach for convex problems ${ }^{[1]}$
- Non-sequential method which provides a one-shot solution for general convex problems
- Randomization of $\Delta \in \mathcal{B}$ and solution of a single convex optimization problem
- Derivation of a bound on the sample size ${ }^{[1]}$
- A new improved bound based on a pack-based strategy ${ }^{[2]}$
[1] G. Calafiore and M. Campi (2004)
[2] T. Alamo, R. Tempo and E.F. Camacho (2007)
NATO Lecture Series SCI-195 @RT 2008

Convex Semi-Infinite Optimization

IEIT-CNR

- The semi-infinite optimization problem is

$$
\min c^{T} \theta \quad \text { subject to } f(\theta, \Delta) \leq 0 \quad \text { for all } \Delta \in \mathcal{B}
$$

where $f(\theta, \Delta) \leq 0$ is convex in θ for all $\Delta \in \mathcal{B}$

- We assume that this problem is either unfeasible or, if feasible, it attains a unique solution for all $\Delta \in \mathcal{B}$ (this assumption is technical and may be removed)

■ We assume that $\theta \in \Theta \subseteq \mathbf{R}^{n}$
$\overline{\text { NATO Lecture Series SCl-195 }}$ @RT 2008^{2} ${ }^{120}$

- Using randomization, we construct a scenario problem
- Taking random samples $\Delta^{i}, i=1,2, \ldots, N$, we construct

$$
f\left(\theta, \Delta^{i}\right) \leq 0, \quad i=1,2, \ldots, N
$$

and
$\min c^{T} \theta \quad$ subject to $f\left(\theta, \Delta^{i}\right) \leq 0, \quad i=1,2, \ldots, N$

- Theorem: For any $\varepsilon \in(0,1)$ and $\delta \in(0,1)$, if

$$
N \geq\lceil\overline{2} / \varepsilon \log (1 / \delta)+2 n+2 n / \varepsilon \log (2 / \varepsilon)\rceil
$$

then, with probability no smaller than $1-\delta$

- either the scenario problem is unfeasible and then also the semi-infinite optimization problem is unfeasible
- or, the scenario problem is feasible, then its optimal solution $\hat{\theta}_{N}$ satisfies

$$
\operatorname{Pr}\{\Delta \in \mathcal{B}: f(\theta, \Delta)>0\} \leq \varepsilon
$$

[1] G. Calafiore and M. Campi (2004)

NATO Lecture Series SCI-195	@RT 2008	122

A New Improved Bound ${ }^{[1]}$

- A new improved bound (based on a so-called packbased strategy) has been recently obtained

$$
N \geq\lceil 2 / \varepsilon \log (1 / 2 \delta)+2 n+2 n / \varepsilon \log 4\rceil
$$

- The main difference with the previous bound is that the factor
$2 n / \varepsilon \log (2 / \varepsilon)$
is replaced with
$2 n / \varepsilon \log 4$
[1] T. Alamo, R. Tempo and E.F. Camacho (2007)

IEIIT-CNR

RACT

$\square \square \square$

- RACT: Randomized Algorithms Control Toolbox for Matlab
- RACT has been developed at IEIIT-CNR and at the Institute for Control Sciences-RAS, based on a bilateral international project
- Members of the project

Andrey Tremba (Main Developer and Maintainer)
Giuseppe Calafiore
Fabrizio Dabbene
Elena Gryazina
Boris Polyak (Co-Principal Investigator)
Pavel Shcherbakoy
Roberto Tempo (Co-Principal Investigator)

[^2]
$\square \square \square \square \square \square \square \square \square ~$

- Randomized algorithms have been developed for various specific applications
- Control of flexible structures
- Stability and robustness of high speed networks
- Stability of quantized sampled-data systems
- Brushless DC motors
- Control design of Mini UAV

	@RT 2008	128
NATO Lecture Series SCI-195		

[1] L. Lorefice, B. Pralio and R. Tempo (2007)
$\square \square \square \square \square \square \square \square$

- This activity is supported by the Italian Ministry for Research within the National Project

Study and development of a real-time land control and monitoring system for fire prevention

- Five research groups are involved together with a government agency for fire surveillance and patrol located in Sicily
- The aerial platform is based on the MicroHawk configuration, developed at the Aerospace Engineering Department, Politecnico di Torino, Italy

NATO Lecture Series SCl-195	@RT 2008	130

Uncertainty Description - 1

- We consider structured parameter uncertainties affecting plant and flight conditions, and aerodynamic database
- Uncertainty vector $\Delta=\left[\delta_{1}, \ldots, \delta_{16}\right]$ where $\delta_{i} \in\left[\delta_{i}^{-}, \delta_{i}^{+}\right]$
- Key point: There is no explicit relation between state space matrices A and B and uncertainty Δ
- This is due to the fact that state space system is obtained through linearization and off-line flight simulator
- The only techniques which could be used in this case are simulation-based which lead to randomized algorithms

parameter	pdf	$\overline{\delta_{i}}$	$\%$	δ_{i}	δ_{i}^{+}	$\#$
flight speed [ft/s]	U	42.65	± 15	36.25	49.05	1
altitude [ft]	U	164.04	± 100	0	328.08	2
mass [lb]	U	3.31	± 10	2.98	3.64	3
wingspan [ft]	U	3.28	± 5	3.12	3.44	4
mean aero chord [ft]	U	1.75	± 5	1.67	1.85	5
wing surface [ft$\left.{ }^{2}\right]$	U	5.61	± 10	5.06	6.18	6
moment of inertia [lb ft²]	U	1.34	± 10	1.21	1.48	7

Aerodynamic Database Uncertainties

parameter	pdf	$\overline{\delta_{i}}$	σ_{i}	$\#$
$C_{X}[-]$	G	-0.01215	0.00040	8
$C_{Z}[-]$	G	-0.30651	0.00500	9
$C_{m}[-]$	G	-0.02401	0.00040	10
$C_{X q}\left[\mathrm{rad}^{-1}\right]$	G	-0.20435	0.00650	11
$C_{Z q}\left[\mathrm{rad}^{-1}\right]$	G	-1.49462	0.05000	12
$C_{m q}\left[\mathrm{rad}^{-1}\right]$	G	-0.76882	0.01000	13
$C_{X}\left[\mathrm{rad}^{-1}\right]$	G	-0.17072	0.00540	14
$C_{Z}\left[\mathrm{rad}^{-1}\right]$	G	-1.41136	0.02200	15
$C_{m}\left[\mathrm{rad}^{-1}\right]$	G	-0.94853	0.01500	16

NATO Lecture Series SCI-195

Uncertainty Description - 2

- We consider random uncertainty $\Delta=\left[\delta_{1}, \ldots, \delta_{16}\right]^{T}$
- The pdf is either uniform (for plant and flight conditions) or Gaussian (for aerodynamic database uncertainties)
- Flight conditions uncertainties need to take into account large variations on physical parameters
- Uncertainties for aerodynamic data are related to experimental measurement or round-off errors

Phase 1: Random Gain Synthesis (RGS)

- Critical parameters are flight speed and take off mass
- Specification property

$$
S_{1}=\left\{K: A_{c}-B_{c} K \text { satisfies the specs below }\right\}
$$

$$
\begin{array}{lcc}
\omega_{S P} \in[4.0,6.0] \mathrm{rad} / \mathrm{s} & \zeta_{S P} \in[0.5,0.9] & \omega_{P H} \in[1.0,1.5] \mathrm{rad} / \mathrm{s} \\
\zeta_{P H} \in[0.1,0.3] & \Delta \omega_{S P}< \pm 45 \% & \Delta \omega_{P H}< \pm 20 \%
\end{array}
$$

$$
\zeta_{P H} \in[0.1,0.3] \quad \Delta \omega_{S P}< \pm 45 \% \quad \Delta \omega_{P H}< \pm 20 \%
$$

where ω and ζ are undamped natural frequency and damping ratio of the characteristic modes; $S_{S P}$ and ${ }_{P H}$ denote short period and phugoid mode

NATO Lecture Series SCI-195
$\varrho^{\text {©RT } 2008}$

Volume of the Good Set

- Define a bounding set \mathcal{B} of gains K

$$
\mathcal{B}=\left\{K: k_{i} \in\left[k_{i}^{-}, k_{i}^{+}\right], i=1, \ldots, 4\right\}
$$

- Define the volume of the good set

$$
\mathrm{Vol}_{\text {good }}=\int_{A} \mathrm{~d} K
$$

where $A=\left\{K \in \mathcal{B} \cap \mathcal{S}_{1}\right\}$

- $\mathrm{Vol}_{\mathcal{B}}$ is simply the volume of the hyperrectangle \mathcal{B}
 IEIIT-CNR Specs in the Complex Plane

\qquad

Randomized Algorithm 1 (RGS)

- Uniform pdf for controlle gains K in given intervals
- Accuracy and confidence $\varepsilon=4 \cdot 10^{-5}$ and $\delta=3 \cdot 10^{-4}$
- Number of random samples is computed with "Log-over-Log" Bound obtaining $N=200,000$
- We obtained 5 gains K^{i} satisfying specification property S_{1}

			Random Gain Set	
			$\square \square \square$	$\square \square \square \square \square \square \square \square$
gain set	K_{V}	K_{α}	K_{q}	K_{θ}
K^{1}	0.00044023	0.09465000	0.01577400	-0.00473510
K^{2}	0.00021450	0.09581200	0.01555500	-0.00323510
K^{3}	0.00054999	0.09430800	0.01548200	-0.00486340
K^{4}	0.00010855	0.09183200	0.01530000	-0.00404380
K^{5}	0.00039238	0.09482700	0.01609300	-0.00417340
NATO Lecture Series SCl-195		${ }^{\text {eRT } 2008}$		150

Phase 2: Random Stability Robustness Analysis (RSRA)
IEIIT-CNR

- Take $K_{\text {rand }}=K^{i}$ obtained in Phase 1
- Randomize Δ according to the given pdf and take N random samples Δ^{i}
- Specification property

$$
S_{2}=\left\{\Delta: A(\Delta)-B(\Delta) K_{\text {rand }} \text { satisfies the specs of } S_{1}\right\}
$$

- Computation of the empirical probability of stability \hat{p}_{N}

IEIIT-CNR

Empirical Probability

- Consider fixed gain $K_{\text {rand }}$
- Define the probability

$$
p_{\text {true }}=\int_{C} p(\Delta) \mathrm{d} \Delta
$$

where $\mathcal{C}=\left\{\Delta \in \mathcal{B} \cap \mathcal{S}_{2}\right\}$ and $p(\Delta)$ is the given pdf

- Then, we introduce a "success" indicator function

$$
I\left(\Delta^{j}\right)=1 \text { if } \Delta^{j} \in S_{2}
$$

or $I\left(\Delta^{j}\right)=0$ otherwise

- The empirical probability for \mathcal{S}_{2} is given by

$$
\hat{p}_{N}=N_{\text {good }} / N
$$

where $N_{\text {good }}$ is equal to the number of successes

	@RT 2008	152
NATO Lecture Series SCI-195		

- Take $K_{\text {rand }}$ from Phase 1
- Accuracy and confidence

$$
\varepsilon=\delta=0.0145
$$

- Number of random samples is computed with Chernoff Bound obtaining $N=5,000$
- Empirical probability is defined using an indicator function
NATO Lecture Series SCl-195

Given $\varepsilon, \delta \in(0,1)$, RSRA returns the empirical probability \hat{p}_{N} that S_{2} is satisfied for a gain $K_{\text {rand }}$ provided by Algorithm 1

1. Compute N using the Chernoff Bound;
2. Generate N random vectors $\Delta^{j} \in \mathcal{B}$ according to the given pdf;
3. For fixed $j=1,2, \ldots, N$, compute the closed-loop matrix $A_{c l}\left(\Delta^{j}\right)=A\left(\Delta^{j}\right)-B\left(\Delta^{j}\right) K_{\text {rand }} ;$

- if $A_{c l}\left(\Delta^{j}\right) \in S_{2}$, set $I\left(\Delta^{j}\right)=1$;
- otherwise, set $I\left(\Delta^{\prime}\right)=0$;

4. End;
. Return the empirical probability \hat{p}_{N}

Probability Degradation Function

IEITT-CNR

Flight condition amplification factor $\rho>0$ keeping the nominal value constant

$$
\delta_{i} \in \rho\left[\delta_{i}^{-}, \delta_{i}^{+}\right] \quad \text { for } i=1,2, \ldots, 7
$$

- No uncertainty affects the aerodynamic database, i.e.

$$
\delta_{i}=\overline{\delta_{i}} \quad \text { for } i=8,9, \ldots, 16
$$

- For fixed $\rho \in[0,1.5]$ we compute the empirical probability for different gain sets K^{i}
- The plot empirical probability vs ρ is the probability degradation function
$\overline{\text { NATO Lecture Series SCl- } 195}$

Bandwidth Criterion
\square ルールn
 frequency response
－Computation of the empirical probability that S_{3} is satisfied

NATO Lecture Series SC1－195	＠RT 2008	159

Gain Selection

- Multi-objective criterion as a compromise between different specifications

Finally we selected gain K^{1} as the best compromise between all the specs and criteria!

Bandwidth criterion for K^{1} (left) and K^{3} (right)
$\overline{\text { NATO Lecture Series SCI-195 }}$

(IEIIT-CNF	Acknowledgment	
- Thanks to test video	and ter gr	

[^0]:

 ## Limitations of Robust Control-2

 IEIIT-CNR
 $\square \square \square$

 - Computational Complexity: Worst case robustness is often $\mathcal{N} \mathcal{P}$-hard (not solvable in polynomial time unless $\mathcal{P}=\mathcal{N} \mathcal{P})^{[1]}$
 - Various robustness problems are $\mathcal{N} \mathcal{P}$-hard
 - static output feedback
 - structured singular value
 - stability of interval matrices
 [1] V. Blondel and J.N. Tsitsiklis (2000)

 | | @RT 2008 | 12 |
 | :--- | :--- | :--- |
 | NATO Lecture Series SCl-195 | | |

[^1]: Two Problem Instances
 IEIIT-CNR
 Two Problem Instances

 - We have two problem instances for worst case performance

 $$
 J_{\max } \leqslant \gamma \text { and } J_{\max }>\gamma
 $$

 and two problem instances for average case performance

 $$
 J_{\mathrm{ave}} \leqslant \gamma \text { and } J_{\mathrm{ave}}>\gamma
 $$

 - This leads to one-sided and two-sided MCRA

 | | | |
 | :--- | :--- | :--- |
 | NATO Lecture Series SCl 195 | eRt 2008 | 48 |

[^2]: IEITT-CNR
 RACT

 - Main features
 - Define a variety of uncertain objects: scalar, vector and matrix uncertainties, with different pdfs
 - Easy and fast sampling of uncertain objects of almost any type
 - Randomized algorithms for probabilistic performance verification and probabilistic worst-case performance
 - Randomized algorithms for feasibility of uncertain LMIs using stochastic gradient, ellipsoid or cutting plane methods (YALMIP needed)

 NATO Lecture Series SClist

